Large-Scale Distributed Second-Order Optimization Using
Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks |m| @2 LONG BEACH

CALIFORNIA
TOkyO Tech nVIDIA —_——— June 16-20, 2019

Kazuki Osawa’, Yohei Tsuiji'-3, Yuichiro Ueno!, Akira Naruse?, Rio Yokota'-3, and Satoshi Matsuoka'-
Tokyo Tech, 2NVIDIA, 3AIST-Tokyo Tech RWBC-OIL, AIST, “RIKEN CCS

image Classification Summary | Large-Scale Distributed Deep Learning
Set of image & class label: S = {(x,y)}

Our Approach | Distributed K-FAC Discussion | Kazuis-FAQ

ol of Large mini-batch training is essential GPU NN P> V1 — G A £0(6) C5 W Q1. How much does Distributed K-FAC improve the
timization: —]
oal of optimization: 6 azgeéfimﬁ(e) « The goal of large-scale distributed deep learning is accelerating training by using many 08 Pe (y|m) 1, A1 Vi L5(0) 1 performance? 0.75)
L oss function: 1 GPUs at the same time. ; : : : A1. Here is a plot which =
oss function: £(0) = |S] Z —logpe(ylz) « Larger mini-batch allows us to utilize more GPUs and to converges in fewer iterations. ' shows that larger # GPUs §
(z,y)€S ' Z0.65
. . . . - yege GPU DNN Vv lo 7 G, A, Vi L=(0 improves the performance 3
Optimization in Deep Learning But, Iarge mini-batch training Is difficult ... j\> g&DPe (y|) €y £3Ly V Wy B() E> W while # GPUs < # layers Zos
| | | o « SGD with large mini-batch (> 8K) suffers from the generalization gap (P. Goyal+, 2018). 5 : : : (ResNet-50 has 107 layers 155
Stochastic learning with mini-batch: » Previous approaches tried to solve this problem by ad-hoc modification of SGD. j‘> in total (FC, Conv, BN)). TA W de m e 138 2% s 1024 2048
1 « K-FAC with large mini-batch (<= 2K) was said to be able to generalize well (J. Ba+, 2017) GPU DNN V1 .
BcS L5(0) = — —1 LIRS ’ ’ ogpo\Yy|x)—/— G, A, Vw, L(0 W
5(9) | B| (wgeB cepolyi®) but the comparison to SGD wasn’t done with well-trained models. 5P (y‘) Ly AL, Vw, L5(0) E> L Q2. Why do you want to accelerate training
. Stochastic Gradient Deécen ; - No one has shown the clear advantage of K-FAC over SGD since K-FAC requires extra B Reduce-Scatter ResNet-50 on ImageNet?
(heavy) computation/communication that need to be distributed among many GPUs. _ ~ J _ ~ J A2. We chose training ResNet-50 on ImageNet as a benchmark
0+ = 9 _ v L5(0W) o _ _ _] where highly optimized SGD results are available as references.
. Natural Gradient Descent (S. Amari, 1998) K-FAC can handle extremely large mini-batch (Our Contribution) Data parallelism Layers parallelism What we really want to accelerate are even larger problems.
' ’ « We implemented Distributed K-FAC which allowed us to scale K-FAC up to 1024 GPUs. Each GPU handles Each GPU applies K-FAC to : : : i o 14
H(t—H) = H(t) — nF(H(t))_1V£B(9(t)) We trained ResNet-50 on ImageNet with extremely Iarge mini-batch size (131 K) different parts of mini-batch B the We|ghts of different |ayers tth. Wsr‘Ga:)'ls the benefit of using K-FAC? It's slower
* We show the advantage of K-FAC over SGD for large mini-batch for the first time. (the weights will be synchronized.) an :

(empirical) Fisher information matrix A3. Since K-FAC converges in fewer iterations than SGD,

1

FO) = — Z V log pe (y|2)V log pe (y|x) ™ g _ . . _ _ improving the per iteration performance will directly accelerate the
Bl 5, el Scnchmark | Training ResNet-50 on ImageNet in 978 iterations / 10 minutes with K-FAC training without additional tuning. Even if we end up having similar
performance to the best known first-order methods, at least we will
K-FAC (. Martens+, 2015) accelerates NGD L : : : . : have a better understanding of why it works by starting from
o) mini-batch size ‘B ‘ # Iterations training time socond-order methods.
it i P, |~ [Akiba+, 2018 (74.9%) 32,768 3,519 Tesla P100 x1024 15 min Q4. What’s the Next?
Layer 1
_ _— F Kronecker product SGD Jia+, 2018 (75.8%) 65,536 1,800 Tesla P40 x 2048 6.6 Mmin A4. There is still room for improvement in our distributed design
Layer] ¢ F,~ G, A, | _ 2 086 5 mi to overcome the bottleneck of computation/communication for
; | R (GioA) -G oA Mikami+, 2018 (75.3%) 55,296 ’ Tesla V100 x 3456 min K-FAC - the Fisher information matrix
Laéer L L L Yamazaki+, 2019 (75.0%) 81,920 1.440 Tesla V100 x 2048 I 1.2 min can be approximated more aggressively EI E
softmax Step1: layer-wise block-diagonal Step2: Kronecker-factorization , without loss Of accuracy. -
O .
p(y|x) Layer-wise Update: _ : Q5. Codes available?
WG(I " L " K-FAC This work (75.0%) 131 ,072 9738 Tesla V100 x 1024 10 min A5. Our Chainer implementation is ?
sl Wy =W = (G @A) Vw, L5(0) _) N (B|=32,768)) available on GitHub! E r o
Y Y (PyTorch version is coming soon) https://github.com/tyohei/chainerkfac
Which Optimizer is “Fast” ? . .. :

i K-FAC converges faster than SGD (SOTA results) Competitive training time e o o e D e 20
training time = time / iteration x # iterations * Our Distributed K—F_AC enabled tuning Iqrge mini—bgtch K-FAC on ImageNet in realistic time. « Data and layers hybrid parallelism introduced in our design ErZﬁf‘ﬁ,%ffSe?ﬂéﬂk%ggi?F:Z:tto'\f')uﬁ?: rv_vJoT iiCchlzzcs::c;gZinr.e-ls-Zfrgmogét\ilrl?t?e:ugp:lrst?rd-?F)éifop'?ec'.(? Real |
SGD Good Bad +We tuned K-FAC with extremely large mini-batch size {4096, 8192, 16384, 32768, 65536, 131072} allowed us to train on 1024 GPUs Usage/asearah Genter for Interdiscilinary Large.scale Information Ifastructures” m Japan (Prejoct D
NGD Bad Good « \We achieved validation accuracy >75% in {10948, 5434, 2737, 1760, 1173, 978} iterations. « We achieved 74.9% in 10 min by using K-FAC with the jh180012-NAHI). _ _ |

. : - : : i : Kazuki Osawa, Ph.D. candidate at Tokyo Tech
K-FAC Not Bad « We showed the advantage of a second-order method (K-FAC) over a first-order method (SGD) stale Fisher information matrix for mini-batch size 32,768. , ,
- ot ba Good . . L . ~ . (oosawa.k.ad at m.titech.ac.jp)
in ImageNet classification for the first time. * (32images/GPU x 1024GPUs = 32,768images)

(at least for a small DNN) supervised by Rio Yokota

https://github.com/tyohei/chainerkfac

